Артериальное давление концентрация ионов
Газы артериальной крови
В норме артериальный рН является отрицательным логарифмом концентрации ионов водорода (Н) и колеблется между 7,35 и 7,45. При дыхании комнатным воздухом нормальное РаСО2 изменяется между 35 и 45 мм рт.
обычно не измеряется, но довольно просто рассчитывается по рН и РаСО2 с помощью номограммы, полученной из уравнения Хендерсона—Хассельбаха. Прямые автоматизированные определения НСО3
в сыворотке (общее содержание СО2) более точны, чем номограммы для определения содержания НСО3
. Подобным же способом насыщение артериальной крови кислородом (SaO2) обычно не измеряется, а рассчитывается по РаО2.
НАПРЯЖЕНИЕ, НАСЫЩЕНИЕ И СОДЕРЖАНИЕ ГАЗА
Парциальное давление в крови — его напряжение — отражает скорость, с которой молекулы газа проникают в плазму. Содержание газа зависит не только от парциального Давления, но также от способности крови сохранять данный газ (ее емкости по отношению к данному га-3У)- СО2 находится в растворенной Форме, а также связан с гемоглобином и другими белковыми буферами, 11 его содержание изменяется в широком диапазоне одновременно с напряжением. Однако транспорт О2 более сложен, так как отношение между напряжением и насыщением (содержанием) отличается высокой нелинейностью. Анализ артериальной крови обеспечивает данные, необходимые для вычисления показателей эффективности оксигенации, таких как альвеолярно-артериальный градиент по кислороду [D(A-a)O2], альвеолярно-артериальное (А/а) отношение и отношение PaO2/FiO2. Преимущества и ограничения каждого из этих показателей обсуждаются подробно в главе 5 «Респираторный мониторинг».
Напряжение кислорода и насыщение
При нормальном атмосферном давлении содержание кислорода в крови определяется главным образом количеством О2, связанного с гемоглобином (Нb), и в небольшой мере — растворенным О2. Переносимый объемом крови О2 (мл О2/100 мл крови) зависит от РаО2 (мм рт. ст.), концентрации Нb (г/дл), рН и характеристик самого Нb:
содержание О2 = 1,34 х (НЬ) х (% насыщения) + (0,003) х (РаО2).
В большинстве случаев количество растворенного кислорода незначительно, но становится существенным, когда применяется чистый кислород в гипербарических условиях. В такой ситуации РаО2 может превышать 2000 мм рт. ст.
Анализ газов артериальной крови непосредственно определяет парциальное давление растворенного О2, но обеспечивает только косвенный (и часто неточный) показатель содержания О2. Прямое и очевидное влияние на это отношение имеет анемия. Патологические гемо-глобины (например, метгемоглобин, карбоксигемоглобин) может связывать О2 с более низким сродством, чем нормальный, или же места их связи с О2 могут быть занятыми, что обусловит более низкое содержание О2, чем было бы при нормальном Нb.
В отношении потребностей ткани важно как количество кислорода, доставляемого в единицу времени (произведение сердечного выброса на содержание кислорода в единице объема), так и парциальное давление О2 в артериальной крови (РаО2). Допустимая гипоксемия зависит не только от степени десатурации, но также от имеющихся компенсаторных механизмов и чувствительности пациента к гипоксии. Кроме повышенного извлечения О2, главные механизмы компенсации заключаются в увеличении сердечного выброса, улучшении перфузии (за счет раскрытия капилляров и изменений в распределении сопротивления) и производства красных кровяных клеток (эритроцитоз).
Если у человека без нарушения функции сердца или анемии в течение короткого периода разовьется гипоксемия, она никак не проявится, пока значение РаО2 не упадет ниже 50—60 мм рт. ст. На этом уровне обычно отмечаются первые признаки, отражающие повышенную чувствительность мозговой ткани к гипоксии, — недомогание, умеренная тошнота, головокружение, нарушение суждений и дискоординация. Минутная вентиляция возрастает, но при этом сильной одышки не возникает, если только речь не идет об ухудшении механических свойств легкого, например о хроническом обструктивном заболевании легких (ХОЗЛ). Если РаО2 снижается до 35—50 мм рт. ст., появляется спутанность сознания, напоминающая состояние при алкогольном опьянении, особенно у больных старшего возраста с цереброваскулярной ишемической болезнью. Такие пациенты склонны к нарушениям сердечного ритма. При значениям РаО2 ниже 35 мм ртст. уменьшается почечный кровоток, замедляется диурез и развиваются брадикардия, устойчивая к атропину, и блокада проводящей системы.
На этой стадии также появляется лактатацидоз, даже при нормальной функции сердца. Больной становится сонным или заторможенным, а минутная вентиляция максимально возрастает. При РаО2 около 25 мм рт. ст. здоровый неадаптированный человек теряет сознание и минутная вентиляция начинает падать под влиянием угнетения дыхательного центра.
Эта последовательность встречается и при большем напряжении О2, если поврежден какой-либо из главных компенсирующих гипоксемию механизмов. Даже умеренные уменьшения напряжения О2 плохо переносятся пациентами с анемией, со сниженным сердечным выбросом или коронарной недостаточностью. Кроме того, у пациентов в критическом состоянии автономный контроль распределения кровотока может быть нарушен либо по причине эндогенной патологии (например, сепсис), либо под влиянием вазопрессорной или сосудорасширяющей терапии. Поскольку при снижении альвеолярного напряжения О2 сеть легочных сосудов сжимается, у пациентов с ранее существовавшей легочной гипертензией или с cor pulmonale гипоксемия может вызывать декомпенсацию правого желудочка.
Если у здоровых людей применяется чистый О2 при нормальном барометрическом давлении, венозное и тканевое напряжение О2 повышается незначительно. Следовательно, кислород мало воздействует и на нелегочные ткани. Однако высокие концентрации О2 постепенно заменяют в легких азот, даже в плохо вентилируемых участках. Замена азота кислородом в конечном счете вызывает коллапс плохо вентилируемых областей, поскольку О2 поглощается венозной кровью быстрее, чем восполняется. В результате возникают ателектазы и снижается растяжимость легких. Еще важнее то, что высокое напряжение О2 может ускорять образование свободных радикалов и других вредных продуктов окисления, повреждая ткани бронхов и паренхимы. Вызванное кислородом повреждение легких наиболее четко проявляется на экспериментальных моделях, использующих здоровых животных, однако токсичность кислорода у пациентов с поврежденными легкими выражена намного меньше. Фактически сами процессы, которые обычно провоцируют дисфункцию легких (например, сепсис, альвеолярное кровотечение и т. д.), могут защищать их от гипероксии.
Физиология солевого баланса и причины гипертонии
Физиология солевого баланса и причины гипертонии
Концентрация хлористого натрия в сыворотке крови является регулятором объема воды в ее составе и соответственно давления крови на стенки сосудов. В организме существует система гомеостаза – сохранения концентрации ионов натрия и хлора в сыворотке крови на постоянном уровне. Если концентрация ионов повышается за счет поступления лишней соли из пищи, то возникает жажда, физиологическая потребность в воде. Утолить жажду можно, лишь выпив такое количество воды, которое снизит концентрацию соли в сыворотке крови до нормального уровня. Увеличившийся при этом объем крови повышает ее давление на стенки сосудов. Для натрия гомеостаз достигается при его концентрации в 135 – 145 миллимолей на литр крови. При молекулярном весе натрия, равном 23, гомеостаз обеспечивается 3,2 г натрия на литр крови. Молекулярный вес хлора равен 35,5. Поскольку слабощелочная реакция сыворотки крови означает небольшое преобладание ионов натрия над ионами хлора, нормальное или оптимальное содержание хлористого натрия в крови составляет 8,1 г на литр. Дополнительное осмотическое давление сыворотки крови обеспечивается сульфатными, карбонатными, азотнокислыми и фосфорными солями калия, магния, марганца, железа и других элементов, необходимых организму. Поэтому физиологический раствор хлористого натрия, применяемый в медицине для внутривенных вливаний, имеет концентрацию соли в 0,9%.
Если человек принимает с пищей меньше хлористого натрия, чем теряет с мочой и через кишечник, то концентрация ионов натрия в крови падает. Снижение осмотического давления сразу регистрируется особыми мозговыми рецепторами, которые включают несколько нейрогуморальных систем. Почки увеличивают выделение воды и усиливают реабсорбцию натрия. Объем крови уменьшается, давление на стенки сосудов падает, и концентрация хлористого натрия в крови возвращается к норме. Если дефицит натрия в пище продолжается несколько дней, то возникает состояние усталости и уменьшается выделение мочи. В дальнейшем появляется тошнота, анорексия и солевой голод. Эксперименты показали, что человек может выдержать полное отсутствие соли в диете не более 10 – 11 суток. На этой стадии опыты прекращали, так как добровольцы начинали терять сознание.
Главным регулятором гомеостаза является гормон ренин, выделяемый почечными клубочками в ответ на снижение количества ионов натрия в крови. Ренин обладает сосудосуживающим действием. Он одновременно стимулирует выделение корой надпочечников альдостерона – гормона, обладающего способностью уменьшать скорость выделения натрия из крови. Ренин-альдостероновый механизм активируется не только при дефиците натрия, но и при падении артериального давления крови. В том случае, когда концентрация натрия в крови выше нормы, синтез ренина, напротив, ингибируется. Удаление натрия в почечных канальцах усиливается за счет простой диффузии. Ощущение жажды появляется в результате раздражения особых осморецепторов, расположенных на стенках кровеносных сосудов, и в первую очередь – на стенках сосудов головного мозга. Жажда может наступить и после обильного потоотделения. Жажда исчезает сразу после восстановления гомеостаза.
Если увеличенное поступление хлористого натрия приобретает хронический характер, что вполне обычно для современных диет, то гормональная регуляторная ренин-альдостероновая система постепенно ослабляется, так как она все время отключена. Любая физиологическая система требует тренировки. Гормональные регуляторы слабеют и при старении. Порог кровяного давления, при котором усиливается выделение ионов натрия, сдвигается в сторону повышения. Возникает хроническое повышенное давление крови, то есть гипертония. Из всех патологий обмена веществ, связанных с неправильным питанием, гипертоническая болезнь является самой массовой. Это, как и ожирение, диабет-2 и подагра, специфическая патология человека. Животные в естественной среде обитания не болеют гипертонией. Люди в экономически процветающих странах сначала создают, потребляя соль в избытке, неизбежность гипертонии, а затем лечатся от нее комплексом лекарств – главным образом, диуретиками, которые удаляют вместе с мочой избыток хлористого натрия из крови. Есть лекарства, которые подавляют рецепторы, регулирующие реабсорбцию ионов натрия в почках. Лекарствами имитируется ренин-альдостероновая система. Одной из медицинских рекомендаций при гипертонии является строгое ограничение потребления поваренной соли. Болезнь обратима, если гормональную регуляцию еще можно восстановить. Но в пожилом возрасте сделать это крайне трудно. Наш организм приспособлен эволюцией к долгой жизни без гипертонии. Эта болезнь появилась как побочный продукт цивилизации.
В некоторых случаях может возникать дефицит натрия, гипонатриэмия (hyponatraemia), например при избыточном потоотделении при беге на длинные дистанции, при сильных поносах, избыточном потреблении воды и при болезнях почек, уменьшающих их способность к реабсорбции натрия. В массовых забегах непрофессионалов на марафонскую дистанцию, которые каждый год проводятся в Лондоне, Нью-Йорке и в других городах, участвуют десятки тысяч человек самого разного возраста, иногда пожилые. И потеря сознания на дистанции из-за нарушения ионного баланса – явление там нередкое. Иногда такой псевдоспорт, ставший телевизионным шоу, имеет и летальные исходы. Лондонский марафон (42 км) 8 апреля 2010 г., в котором было 48 тыс. участников, обошелся без жертв. Но нескольких человек после финиша унесли на носилках. В марафоне в Нью-Йорке 3 ноября 2008 г. два человека, завершив пробег, потеряли сознание и скончались. Одному из них было 58 лет [3].
Осмотическое давление растворов
Все растворы обладают способностью к диффузии. Диффузией называется стремление вещества равномерно распределиться по всему предоставленному ему объёму.
Если разделить раствор и растворитель полунепроницаемой перегородкой, через которую проходят молекулы растворителя, но не проходят молекулы растворённого вещества, то в этом случае возможна только диффузия растворителя в раствор.
Процесс односторонней диффузии растворителя в раствор через полунепроницаемую перегородку называется осмосом.
Осмотическим давлением называется сила на единицу площади (Н/м 2 ), заставляющая растворитель переходить через полунепроницаемую перегородку в раствор, находящийся при том же внешнем давлении, что и растворитель. Осмотическое давление разбавленных растворов подчиняется законам идеального газа.
Осмотическое давление разбавленных идеальных растворов численно равно тому давлению, которое оказывало бы растворённое вещество, если бы при данной температуре оно в виде идеального газа занимало тот же объём.
где C – молярная концентрация раствора, моль/л; R – универсальная газовая постоянная 8,314 Дж/(моль∙К); T – абсолютная температура, К.
В растворах электролитов благодаря электролитической диссоциации и увеличения числа частиц экспериментальное значение осмотического давления всегда выше, чем теоретически вычисленное по уравнению (71). Степень отклонения наблюдаемого осмотического давления (πэксп) от вычисленной величины (πвыч) выражается изотоническим коэффициентом
i = .
При вычислении осмотического давления растворов электролитов в уравнение (71) вводится поправочный (изотонический) коэффициент i > 1, учитывающий увеличение числа частиц в растворе вследствие электролитической диссоциации молекул:
Для растворов неэлектролитов изотонический коэффициент равен 1. Изотонический коэффициент i зависит от природы электролита и степени диссоциации его молекул. В общем случае при распаде электролита с образованием k – ионов
Если при распаде молекулы образуется два иона k = 2, то формула (73) примет более простой вид:
Пользуясь выражениями (71- 74), можно рассчитать осотическое давление, концентрацию, молекулярные веса растворённых веществ, а также степень диссоциации электролитов в растворах.
Пример 10. Вычислить осмотическое давление 2%-ного раствора глюкозы при 0ºС. Плотность раствора принять равной единице.
Решение. Осмотическое давление вычисляем по формуле (71). Концентрация раствора выражается в моль/дм 3 , R = 8,314 Дж/(моль∙К), молекулярная масса глюкозы С6Н12О6 равна 180 г/моль.
В 100 г 2%-ного раствора содержится 2 г глюкозы. Поскольку плотность данного раствора равна 1, то в 1дм 3 содержится 20 г глюкозы, а это соответствует молярной концентрации С = , в результате получаем:
π = 252,2 кПа
Дата добавления: 2014-12-07 ; просмотров: 1460 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Источники: http://xn--80ahc0abogjs.com/terapiya-anesteziologiya-intensivnaya/gazyi-arterialnoy-krovi-58898.html, http://med.wikireading.ru/32680, http://helpiks.org/1-41148.html